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Abstract some hotspot tracks are topographically smooth and broad (Nazca, Carnegie/Cocos/Galdpagos,
Walvis, Iceland), while others are rough and discontinuous (Easter/Sala y Gomez, Tristan-Gough, Louisville,
St. Helena, Hawaiian-Emperor). Smooth topography occurs when the lithospheric age at emplacement is
young, favoring intrusive magmatism, whereas rough topography is due to isolated volcanic edifices
constructed on older/thicker lithosphere. The main controls on the balance of intrusive versus extrusive
magmatism are expected to be the hotspot swell volume flux Q;, plate hotspot relative speed v, and
lithospheric elastic thickness T,, which can be combined as a dimensionless parameter R = (Qs/v)”z/Te, which
represents the ratio of plume heat to the lithospheric heat capacity. Observational constraints show that,
except for the Ninetyeast Ridge, R is a good predictor of topographic character: for R < 1.5 hotspot tracks are
topographically rough and dominated by volcanic edifices, whereas for R > 3 they are smooth and
dominated by intrusion.

1. Introduction

Many oceanic hotspot track segments can be characterized in terms of smooth or rough topography, likely
reflecting the relative roles of intrusive versus extrusive magmatism (absence or dominance of volcanic
edifices). The two conspicuous examples that motivated this study are noticeable transitions from rough
to smooth topography along the Easter Island hotspot track (rough Easter/Sala y Gomez chains versus broad
and smooth Nazca Ridge segment), and the Tristan da Cunha hotspot track (rough Tristan/Gough chains
versus relatively smooth Walvis Ridge segment) (see Figures 1a and 1b). Smooth topography examples, with
across-axis widths >120 km, include the Rio Grande Rise, the Carnegie/Cocos/Galapagos system, Iceland, the
Tuamotu Ridge, Broken Ridge, and various segments along the Ninetyeast Ridge/Kerguelen and
Réunion/Chagos/Lacadive track. Gravity studies show that these systems are currently in near-Airy isostatic
equilibrium [Dingle and Simpson, 1977; Couch and Whitsett, 1981; Pilger and Handshumacher, 1981; Watts,
2001; Hampel et al., 2004], and plate tectonic reconstructions show that the lithospheric age of emplacement
was young; hence, the overlying plate was thermally thin and rheologically weak, consistent with petrological
models for the role of intrusion along young oceanic hotspot tracks [Richards et al., 2013].

In contrast, other hotspot tracks are relatively rough and discontinuous, dominated by islands and seamounts
with horizontal widths <60 km. Besides the Easter/Sala y Gomez and Tristan/Gough chains, examples include
the Louisville chain, St. Helena track, Juan Fernandez Ridge, and most of the Hawaiian-Emperor chain, among
many others. These systems were formed on old and thick oceanic lithosphere [Pilger and Handshumacher,
1981; Calmant et al., 1990; Lyons et al, 2000; Hieronymus and Bercovici, 2001; Watts, 2001; Hillier, 2007;
Contreras-Reyes et al., 2010] with significant elastic lithospheric strength at the time of emplacement.

These distinct styles of topographic/bathymetric expression among different hotspot tracks present an
opportunity to better understand the underlying processes controlling hotspot activity. In particular, the
abrupt transitions along the two systems illustrated in Figure 1 suggest a relatively simple geodynamic expla-
nation in terms of just a few key parameters.

2. A Simple Scaling Relation

We hypothesize that smooth hotspot topography occurs when the overlying lithosphere is weak and thin
(young), unable to support large volcanic complexes [Feighner and Richards, 1994], thus allowing for broadly
intrusive magmatism in the lower crust to dominate over extrusion [Richards et al., 2013; Orellana-Rovirosa
and Richards, 2015]. Accordingly, smooth topography should occur when the thermal energy available
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Figure 1. (a) Topographic map of the Nazca-Easter hotspot track region. Volcanically active Easter Island and Sala y Gomez
chain marks the most recent activity of the Easter hotspot beneath lithosphere of age >7 Ma (Figure 2). Extending eastward
~2500 km, this initially rough hotspot track exhibits horizontal length scales <40 km. It transitions to the Nazca Ridge,
emplaced on very young lithosphere [Pilger and Handshumacher, 1981], and characterized by a smooth, elevated topo-
graphic rise >200 km wide (due to thickened crust but absent large volcanic edifices, Figure 2), extending another 1000 km
northeastward before encountering the Peruvian subduction zone. PNSC stands for Pacific-Nazca spreading center, also
known as the East Pacific Rise. (b) Topographic map of the Walvis-Tristan-Gough hotspot track region. The broad and
smooth Walvis Ridge, off the west coast of Africa, formed as an “near/on-ridge” system starting ~130 Ma ago and is char-
acterized by a smooth, elevated topographic rise ~330 km wide. At about 80 Ma, the westward moving Mid-Atlantic
(spreading) Ridge left (after crossing over) the Tristan hotpot [Kumar, 1979; O'Connor and Duncan, 1990; Sleep, 2002], the
latter producing rough hotspot track topography characterized by islands and seamounts with horizontal length scales
<70 km. The Tristan plume is currently active beneath lithosphere of age ~22 Ma.
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from the plume is sufficient to thin the lithosphere as it passes over the plume. To estimate the ratio of
available plume heat to lithospheric heat capacity, we consider a strip of hot, buoyant plume material (as
in Sleep [1996]) of thickness s beneath a plate of thickness T, that is moving at relative speed v, generating
a topographic swell of width L (perpendicular to the motion of the plate) and average height h. Assuming
that isostatic balance holds roughly at the horizontal length scale of the swell, we have

S~( m—pp>~g=h~(pm—pw)~9 M

where g is the acceleration of gravity, and the densities p,,, pp, and p,, are, respectively, those of the mantle,
the hot plume material, and water (assuming submerged topography). Multiplying by the swell width L and
plate velocity v, assuming that the mantle plume density difference is due to the average excess plume
temperature 6, — 0, with thermal expansivity a,, we obtain

S-L-v-pm-av~(c9p — Hm) =h-Lv-(p, — py) (2)
or s-L-v-py,-Cp(6p — Om) = (Cp/av)-h-Lv-(p, — py,) 3)

where the heat capacity is C,,. The left side of this equation is just the plume excess heat flux, thus
Up = (Co/av)h-Lv-(pry = pu) (4)

Defining U, as the thermal energy rate necessary to raise the overlying lithospheric mantle temperature to
that of the underlying mantle, 6,, (at the base of the elastic lithosphere), and approximating a roughly linear
geotherm with 6y, right at the Moho (and uppermost mantle), we obtain the rate of heating necessary to
effectively “remove” the overlying lithosphere

Up = LTevep-Cor(Om — Om) /2 (5)
or U = L-Tev+(Cp/a)-(py — prm)/2(after multiplying through by a, /a,) 6)

where py, pm are reference temperature-dependent densities of the lithospheric mantle (at the correspond-
ing temperatures). We now form the heat flux ratio

RO = Up/UL = (h/TE)'Z'(pm _pw)/(pm _pM) (7)

We expect that when Ry is large (>1), the lithosphere will be thermally reset by the plume, resulting in a larger
fraction of magmatic intrusion into the crust, and hence relatively smooth topography.

Unfortunately, the scarcity of published estimates of hotspot swell heights h (aside from King and Adam
[2014]) renders the above formula somewhat impractical. Therefore, we instead consider a closely related
scaling formulation: Recognizing the swell volume flux Q;=L-h-v as the surface expression of the plume
buoyancy, we consider the alternative dimensionless ratio:

R=/(Qs/v)/Te 8)

(We noted at the outset that Qs, v, and T, would likely be the main controlling independent variables for any
particular hotspot track, so that they could likely be combined into a dimensionless group sufficient to char-
acterize the observations). The numerator of this function is the geometric-mean linear dimension of the
swell cross section. Statistical analysis of the hotspot swell data compiled by King and Adam [2014], as well
as some theoretical considerations, suggest the function (Q, /v)'"2=(L-h)""? is approximately proportional
to h, the average swell height. Thus, the dimensionless parameters Ry and R are both approximately propor-
tional to h/T,, and hence to each other, so that both characterize the ability of the plume to thermally erode
the overlying lithosphere and may suffice to predict a plume’s topographic expression. Because estimates for
Q,, v, and T, have been compiled for hotspot tracks by numerous authors (Figure 2), we examine how
smoothness and roughness are correlated with estimated values of R along different oceanic hotspot tracks.

3. Results

Figure 2 contains data on hotspot tracks for which the parameters in the scaling relation for R are sufficiently
constrained in the literature and uses various symbols to indicate the character of topography—smooth
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age [Ma] Qs [m3/s] v[cml/yr] Te[km] LAE [Ma] R +-R Error Bathymetry HTL [km]
Nazca 43 042? 7.39 357 0? 3.83 -1.5,+2.0 s @ 200-240
Nazca 35 0.42 7.39 35 0 3.83 -0.7,+1.0 s @ 100-200
Trans 26.5 0.42 8.32 35 0 3.61 -0.5,+0.6 T @ 30-150
Easter 15 0.84 9.25 6.2 3.04 2.73 -0.4,+0.4 R & <40
Easter 0 0.84 9.25 9.4 7.0 1.80 -0.3,+0.3 R & <35
Walvis 130 0.5317? 2.8 75?2 0? 3.26 -1.5,+2.0 s @ 200-250
Walvis 100 0.531 2.8 75 0 3.26 -1.0, +1.3 s @ 200-270
Trans 80 0.531 2.62 75 0 3.37 -0.6,+0.8 STR @ 50-190
Tristan-Gough 40 0.332 244 11.6 10.8 1.79 -0.4,+0.5 R & 30-70
Tristan-Gough 0 0.390 2.44 16.45 215 1.37 -0.3,+04 R & 10-30
Louisville 60 0.698 4.5 225 40 0.98 -0.4,+0.5 R & <50
Louisville 35 0.698 7.4 26.3 55 0.66 -0.3,+0.4 R & <60
Louisville 125 0.698 6.4 245 47.5 0.76 -0.2, +0.3 R & <35
Louisville 0 0.698 6.4 194 30 0.96 -0.2, +0.3 R & <10
Carnegie 15 0117 3 4.5 0 2.39 -1.5,+2.0 SsT@ 50-100
Galapagos 5 0.33 3.7 5 2 3.36 -0.6, +1.0 s @ 120-180
Galapagos 0 0.33 3.7 11.8 11 1.42 -0.3,+0.5 T 8 50-100
Iceland 9 03272 05? 4572 0°? 9.99 -40,+100 s @ 400-470
Iceland 0 0.64 05? 15.9 20 4.00 -1.5, +6.0 s @ 400-470
Hawaii 47 1 6.27 31.8 80 0.71 -0.3, +0.3 R & 20-50
Hawaii 30 25 6.27 323 82.9 1.10 -0.2,+0.2 R & 15-80
Hawaii 15 75 9.2 32.8 85.4 1.55 -0.2,+0.2 T @ 120-160
Hawaii 8 42 9.2 33.03 86.6 1.15 -0.1, +0.2 R & 40-90
Hawaii 2 125 9.2 33.2 87.6 1.97 -0.1, +0.2 T 8 160-200
Hawaii 0 3.02 9.2 33.3 88 0.97 -0.1,+0.2 RT @ 100-140
Ninetyeast 77 0.18 ? 10 7.9 5 0.95 -0.5,+2.0 ST@ 160-250
Ninetyeast 73 0.18? 10 5 0 151 -0.5,+2.0 ST® 200-300
Ninetyeast 62 0.18? 12 5 0 1.38 -0.5,+15 ST@ 100-150
Ninetyeast 55 0.18? 12 5 0 1.38 -0.5, +1.0 ST@ 140-240
Ninetyeast 45 0.18? 7 13.7 15 0.66 -0.5, +1.0 ST@ 140-240
St. Helena 50 0.16 22 16.80 225 0.90 -0.8, +1.0 R & 10-40
St. Helena 20 0.27 215 20.19 825 0.99 -0.6, +0.8 R & 10-50
St. Helena 0 0.13 21 20.95 85 0.67 -0.3,+0.4 R & <40
Reunion 40 0.233 ? 347 4 0 3.67 -1.5,+2.0 S @ 170-280
Reunion 30 0.465 2.8 14.8 175 1.55 -0.5,+0.8 ST @ 100-200
Reunion 20 0.465 2.5 23.8 45 1.02 -0.4, +0.6 T @ 80-180
Reunion 0 0.465 19 27.4 60 1.01 -0.3,+0.4 T @ 90-150

Figure 2. Summary information for the hotspot tracks with sufficient published constraints: Left to right, hotspot track age
(Ma), swell volume flux Qs (m3/s), plate hotspot horizontal relative speed v (cm/yr), lithospheric elastic thickness T, (km),
lithospheric age at emplacement LAE (Ma), nondimensional function R, approximate error estimates on R, qualitative
topographic style assessment (coded as in Figure 3), characteristic horizontal (transverse) topographic length scale HTL
(km). Away from spreading centers, T, was computed using the age-dependent thickness defined by the 450°C isotherm,
following Watts [1978]. Corresponding published values of T, were used at spreading centers. For the swell volume fluxes
Qs, a factor of 1/2 is applied for on-ridge systems. Exceptions are Walvis ridge where the on-ridge value at 80 Ma is
taken from Adam et al. [2007] and Galapagos where a tentative 1/3 factor was used when the hotspot was located mainly
on the Cocos plate side.

(orange circles), rough (blue diamonds), and transitional (brown squares). R is computed for topographically
coherent segments along individual hotspot tracks. Figure 3 plots these estimates of R versus the estimated
lithospheric age at emplacement (LAE). Figures 2 and 3 show a largely consistent relation between R and
topographic character: for R < 1.5 topography tends to be rough, for 1.5 < R < 3 topography is transitional,
and for R > 3 topography tends to be smooth, consistent with the energy ratio hypothesis contained in
the formulations for Ry and R in the previous section. Exceptions to these trends are treated in the
discussion section.

The results of Figure 3 show some scatter in the relation between bathymetric character and R, which is not
unexpected given uncertainties in the underlying data. Additionally, magma emplacement mode (intrusion
versus extrusion) may also depend upon other lithospheric properties not captured by R, since lithospheric
properties are not solely dependent upon age or elastic/thermal thickness. For example, effective
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Figure 3. Lithospheric age at time of magma emplacement LAE (Ma) versus the dimensionless heat flux ratio R, from data
in Figure 2. Symbols indicate the topographic style. Away from spreading centers, the lithospheric elastic thickness T, ~
(LAE)”z. The Hawaiian plume appears as an outlier due to a much older LAE and a very high buoyancy flux. There is an
overall trend: The systems become smoother as R increases.

lithospheric permeability to melt transport (e.g., via fractures and diking) is poorly understood and may
depend upon the state of stress. Episodes of plate motion reorganization likely cause abrupt stress field
changes, and hence changes in fracture density. Pacific-Nazca plate motion reorganization between 30
and 25Ma [Pilger and Handshumacher, 1981], which caused only a slight bend in the Hawaiian and
Louisville ridges [Lonsdale, 1988; Wessel and Kroenke, 2009], appears to have coincided with a dramatic
change in the Nazca-Easter system, wherein several branches of elongated bathymetry may be the result
of lithospheric fractures (such as the one aligned with the Nazca fracture zone; see Figure 1a).

Figure 2 also lists a measure of the characteristic range of horizontal length scales for each hotspot track
segment, labeled the horizontal topographic length scale (HTL). These HTL ranges represent systematic esti-
mates of the horizontal linear dimension of the characteristic topographic features, taken in the across-track
direction for smooth (continuous)
tracks and in any direction for
isolated volcanic edifices (rough

tracks). Figure 4 indicates the
I expected tendency for HTL to

increase as the heat flux ratio R
300 increases. This relation also implies

Ninetge topological changes: At low R values
Ninetyeast .
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Figure 4. Horizontal topographic length scale HTL (km) versus the dimen-  ping). Above a threshold of R~ 3, the
sionless heat flux ratio R. For each computed R value, a range in HTL
(measured from Google Earth) is presented (Figure 2). The overall set of
observations (green bars) shows the expected increase of HTL with R.
Deviating from this trend (red bars) are the Ninetyeast Ridge and to some tism being intrusive [Feighner and
extent Reunion and the Nazca-Easter transition region (see text). Richards, 1994; Richards et al., 2013;
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Orellana-Rovirosa and Richards, 2015]. Deviating from this trend (red bars) are the Ninetyeast Ridge (with
HTL up to 300 km), and to some extent Reunion (with HTL up to 180 km) and the transition region along
Nazca-Easter (HTL as low as 30km), all of which were influenced by preexisting fracture zones (see
section 4).

4. Discussion

The principal observations motivating this study are the conspicuous transitions from smooth to rough topo-
graphy along the Easter and Tristan hotspot tracks (Figures 1a and 1b). These transitions are explainable in
terms of very young (near-ridge) versus relatively mature (off-ridge) lithospheric emplacement environments.
We have attempted to cast these observations into a larger context by examining other hotspot tracks where
sufficient constraining data exist, and by developing a scaling parameter Ry, the ratio of available plume heat
to lithospheric heat capacity. This scaling is directly related to the parameter R which largely captures the
observed behavior in terms of the controlling variables Q,, v and T, Using the dimensionless parameter Ry
(equation (7)) instead of R (equation (8)) would simply introduce a factor of ~4.9 in the scaling (a shift in
the numerical R values for smooth versus rough topography). Using the estimated thermal lithospheric thick-
ness (perhaps corresponding to the 1250°C isotherm) instead of the estimated elastic thickness T, (corre-
sponding to the 450°C isotherm) would, likewise, merely scale the R values by a constant factor of ~0.2,
and the conversion factor from R to Ry would become ~1.5. We find T, preferable, because it can be
compared with present-day estimates from gravity and bathymetry analysis.

For the scaling calculations we have performed, there is a transition from rough to smooth topography in the
approximate range 1.5 <R <3 for most of the hotspot tracks examined, and this transition is generally
gradual:

1. At 80 Ma, the Mid-Atlantic Ridge moved away from Tristan plume [Nurnberg and Muller, 1991] with a
gradual bathymetric transition: the single-branched broad Walvis rise splits into two narrower (~90 km
width) branches (Tristan and Gough) with visible individual seamounts. In this region R decreases from
~3.3 to ~2.0 (during 80-60 Ma).

2. During the period 8 to 1 Ma ago, the Hawaiian plume increased its buoyancy flux by a factor of ~3 [Wessel,
2016], while v and T, did not change substantially. Correspondingly, in topographic expression, the ridge
horizontal length scale increased from ~60km to ~200km, accompanied by a notable increase in
continuity/connectivity. In this interval, R increases from ~1.2 to ~2.0.

The Ninetyeast Ridge deviates from the global trend (Figure 3), exhibiting transitional to smooth morphology
at rather low values of R (<1.6). Spreading ridge jumps (perhaps controlled by the plume itself causing zones
of weakness), as well as the apparently variable relative motion, v, between the Indian plate and the
Kerguelen/Ninetyeast hotspot, cause the LAE values to vary in ways not well captured by the formulation
used here. The lack of robust estimates for the Kerguelen plume buoyancy flux prior to 40 Ma makes the
problem more challenging.

Moreover, we note that there is a pervasive N-S trending set of fracture zones parallel to the Ninetyeast
hotspot track [Sreejith and Krishna, 2013, 2015], perhaps promoting “upstream” migration of plume material
and magma from the mantle plume source through the fractures. This might weaken the lithosphere in
advance of the principal large-scale magmatism (that typically occurs only above and downstream of the
source), thus facilitating lithospheric deformation and intrusive magmatism, and potentially leading to
smoother bathymetry.

The Reunion hotspot system deviates slightly from the expected trend, with transitional morphologies at
rather low values of R~ 1. This may be due to biased estimates of the Reunion plume buoyancy flux owing
to the Mahanoro-Wilshaw and Mauritius fracture zones that bound the last ~30 Ma of hotspot track formation
[Torsvik et al., 2013].

Some complexity arises when the moving spreading centers are in the close vicinity of mantle plumes: a frac-
tion of the plume material may drain toward the spreading center and then diverge due to plate spreading,
creating subordinated V-shaped axial tracks in addition to the principal hotspot track, as pointed out by Sleep
[2002]. These tracks are evident in some cases, but otherwise, they tend to be merged with the rest of the
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bathymetric signals especially on young lithosphere where massive intrusion and magmatism shapes
the bathymetry.

Older hotspot-related volcanic edifices formed initially above sea level are subject to erosional flattening,
which could skew the evaluation of topographic character to some degree for older hotspot tracks. For
example, on Walvis Ridge (age >80Ma) and northern Ninetyeast Ridge (age >70Ma) the bathymetric
character was likely rougher back in time. Nevertheless, present-day near-ridge systems such as Iceland (or
to some extent Galdpagos) exhibit highly smooth topography. These systems have present-day LAE values
>10 Ma, perhaps comparable to the near-ridge Walvis Ridge prior to ~100 Ma.

Although the scaling parameter R(Q;, v, T,) is not a perfect predictor of the character of hotspot track topo-
graphy or of the balance of intrusive to extrusive magmatism, it does account to first order for many of
the global observations in Figure 2 in terms of the expected controlling variables. Some scatter in the results
indicates additional complexity, such as lithospheric properties altered by stress and fracturing or other
inherited lithospheric properties not captured simply by plate age and elastic thickness.

The formulation presented here emphasizes the recognition of the main controlling variables of the problem
and its understanding from a functional perspective. The present study suggests a useful framework for
future modeling studies of the development of hotspot track topography, especially in regard to the balance
of intrusive versus extrusive processes during hotspot track emplacement.
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