Buscador de noticias

Por título o palabra clave
  • Por fecha de publicación
Facebook Tweet Google+

UChile.online

Beauchef Magazine 2021

Investigadores U. de Chile dan los primeros pasos en el país para usar inteligencia artificial en la construcción

En el Departamento de Ingeniería Civil de la Universidad de Chile, el académico Leonardo Massone recolectó datos de diseño y construcción de edificios habitacionales con el objetivo de crear una red neuronal que pudiera predecir el espesor y largo de muros de un edificio. La iniciativa busca, de esta forma, facilitar procesos en la industria.

Esta red neuronal se puede entrenar para ser utilizada en todas las áreas de la construcción que atañen a la ingeniería civil, sostiene el profesor Massone.

"Esta red neuronal se puede entrenar para ser utilizada en todas las áreas de la construcción que atañen a la ingeniería civil", sostiene el profesor Massone.

Puede entregar una noción rápida de qué cosas faltan o qué cosas deberían cambiar. En vez de esperar un mes para cambiar ciertos parámetros, ahora la respuesta está en minutos, agrega.

"Puede entregar una noción rápida de qué cosas faltan o qué cosas deberían cambiar. En vez de esperar un mes para cambiar ciertos parámetros, ahora la respuesta está en minutos", agrega.

Los avances y aplicaciones de las técnicas de inteligencia artificial han revolucionado la ciencia, la ingeniería y la industria tecnológica. El término, acuñado en 1956, ha sido impulsado por los avances científicos en el aprendizaje automático (machine learning) y en la creación de las redes neuronales, modelo computacional que aprende a partir de grandes cantidades de datos disponibles.

Expertos sostienen que, desde el año 2010 en adelante, las redes neuronales y algoritmos de aprendizaje profundo comenzaron a aplicarse en diferentes áreas científicas y tecnológicas. La aspiradora inteligente, el computador que le gana en ajedrez al campeón mundial, así como el asistente inteligente “Alexa” son ejemplos de la aplicación de esta tecnología en diferentes áreas. Sin embargo, y hasta hace muy poco, el contacto entre la ingeniería civil en construcción y las herramientas de inteligencia artificial era limitado.

En el Departamento de Ingeniería Civil de la Facultad de Ciencias Físicas y Matemáticas (FCFM) de la U. de Chile, el académico Leonardo Massone, junto a Pablo Pizarro, ingeniero civil y estudiante del Magíster en Ingeniería Estructural, Sísmica y Geotécnica, comenzaron a dar importantes pasos para la unión y convergencia de esta área y la IA, principalmente a través de un proyecto de investigación que busca utilizar redes neuronales en el proceso de diseño de estructuras de hormigón de proyectos residenciales. Este camino comenzó a gestarse en el grupo de estructuras de la Cámara Chilena de la Construcción (CChC), liderado por el Instituto del Cemento y del Hormigón de Chile (ICH).

“La pregunta que nos planteamos para comenzar la investigación fue ¿podemos utilizar redes neuronales para realizar una predicción de cómo deberían estar distribuidos estos muros y cuáles serían sus espesores y largos?“, explica el profesor Massone. A partir de esta interrogante, apuntaron a la confección de una red neuronal que utilizara datos e información, cuyo resultado fuera la sugerencia y predicción de construcción de muros en los edificios.

El siguiente paso del proyecto fue realizar un match entre datos de los planos de arquitectura e ingeniería para alimentar una red neuronal. “Definimos variables de entrada y estuvimos varios meses recopilando datos de 165 edificios, donde se rescató información de los planos de arquitectura, procesando y digitalizando aquellos datos que serían de utilidad para este proyecto”, detalla Massone.

Luego introdujeron a la red neuronal (Regression Engineering Neural Estimator - RENE) la información recolectada con más de 30 variables, buscando la predicción de espesor y largo del rectángulo requerido para cierto edificio. “La idea era ver si existía alguna forma, usando estos métodos regresivos, que nos permitiera hacer una predicción de cuál es el espesor y largo de muro más correcto basado en toda esta información de cientos de proyectos que teníamos recopilados”, señala.

Una vez que la red neuronal arrojó resultados satisfactorios, la segunda parte del proyecto consistió en entrenar la red para que sugiriera muros, que por una u otra razón, habían sido omitidos en el diseño arquitectónico. “Nuestra segunda pregunta en el proyecto de investigación fue ¿podríamos utilizar alguna metodología basada en redes neuronales convolucionales, de tal manera de hacer aparecer algo que no estaba en el diseño arquitectónico inicial?”, indica el investigador.

De acuerdo al académico, en esta parte del proyecto se trabajó con redes neuronales convolucionales que utilizan imágenes. En el proceso, se tomaron fotografías de manera de hacer una predicción de la imagen donde se superponen estas fotos. De esta manera, los investigadores encontraron datos que no se habían considerado en el primer plano de arquitectura y los resultados fueron satisfactorios.

Consultado por el impacto de este primer acercamiento entre la ingeniería civil y la inteligencia artificial en la industria, el académico sostiene que esta investigación permitirá dar más seguridad a los ingenieros sobre ciertos parámetros del diseño estructural de edificios residenciales. “Este proyecto puede entregar una noción rápida de qué cosas faltan o qué cosas deberían cambiar. En vez de esperar un mes para cambiar ciertos parámetros, ahora la respuesta está en minutos y la interacción entre arquitecto e ingeniero se acelera”, complementa Massone.

Asimismo, el académico agrega que hay conversaciones con empresas del rubro para aplicar esta tecnología. “Esta red neuronal se puede entrenar para ser utilizada en todas las áreas de construcción que atañen a la ingeniería civil. Es decir, se puede aplicar no solo en el diseño y ejecución de edificios residenciales, sino también en edificios de oficina, en la industria minera, entre otros”, finaliza.

  • Compartir:
    https://uchile.cl/u182155
Su mensaje fue enviado correctamente
Nombre del Destinatario:
E-mail destinatario:
Su nombre:
Su e-mail:
Comentarios: